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1    Introduction 

Consider the non-parametric regression model: 

Xi = f(U) + Zi       * = l,...,n (1) 

where / is only known to be a decreasing function, U = i/n and {2:,} are 
assumed to be a stationary Gaussian process with mean zero and variance a2. 

This kind of regression problem is referred as isotonic regression. Examples 

and interpretations of such models can be found in Barlow et al (1972). 

Let /,• = /(*,-) and / = (/i,...,/n)' be the sampled version of /. For 
simplicity we assume that n = 2m is dyadic. Our goal is to find an estimate 

/ depending only on X\, ...,Xn with small mean-squared-error: 

R(f,f) = n-1J2E(fi-fi)
2 

In this paper, we will discuss the following 3-step wavelet shrinkage pro- 

cedure, introduced by Donoho and Johnstone (1992a, b), for estimation of 

/•■ 

[1] Take the Haar (the simplest wavelet) transform of X,'s to get the 

empirical wavelet coefficients, {yj,k}j=o,...,m-i,k=o,...,v-i- 

Let {aj,jfc}j=o,i,...,Jt=o,...,2>-i De the wavelet coefficients of/, from Lemma 
1 below, a,jtk > 0 for all j, k. 

[2] Apply the threshold: 

to the empirical wavelet coefficients {j/j,yt}j with some optimally chosen 

threshlod Aj, usually Xj = cy/2log(n)/n for all levels. 

[3] Invert the Haar tranform to get an estimate /,• of /,-. 

We will discuss some theoretical properties of the estimator in section 

2. In section 3, we will compare our estimator with the Grenander estimate 
both theoretically and numerically. 



2    Theoretical Results 

The Haar basis is an orthonormal basis of i^fO, 1] and it is also an inter- 

polating wavelet basis (Donoho, 1992), therefore the wavelet coefficients for 

the sampled version is essentially the same as those of function version. 

We first mention some results on the function version coefficients. Let 

4>(t) = J[0il)(<),        rftt) = /[o,i/2)(0 " I[l/2,l)(t) 

and define 
xl>j<k(t) = 7?l2i>{7?t - k) 

For / € J^2[0, 1], define the wavelet coefficients 

bo= I f4>,       ajtk =  / fil>j,k (3) 

and for 0 < t < 1, 
v-\ 

f(t) = bo + Y, E °J.*^-.*(*) 
j>o fc=o 

(in the sense of L<i). Moreover, there is the extremely useful Parseval rela- 

tion: 

11/ - /HLto.1] = (*o " bo)2 + £fe " Hk)2 

i.* 

Consider the class of decreasing functions on [0,1]: 

V(C) = {/ : / decreasing and /(0) - /(l) < C} 

Lemma 1 Suppose f € V(C) and a^ 's are defined as in (3), then 

for all j > 0 and 0 < k < V. And furthermore, 

' 2J-1 

2J/2 £ Hk < C/2 
k=0 

for all j > 0. 



Proof:    For j > 0 and fc = 0,1,...,2'- 1, 

< 2-''V(|)-/(^i))i 
The non-negativity of ay^ is obvious from (4) and 

Ynl _ fC\\ 
<C/2 

k=0                      k=0 
v;1»* /(o)-/(i) 

2 

This completes the proof. 

Next Lemma gives the optimal rate under £2 norm: 

Lemma 2 (Minimax £2 Risk) 

inf   sup   Ä(/,/)xn"2/3 

/ /€2>(C) 

Let 
m-l 2-f-l 

j=0  k=0 

be the wavelet estimate of /, as we described earlier, the following Theorem 

says that fw enjoys the optimal (or near optimal) rate of convergence. 

Theorem 1 

inf    sup   R(fw,f)xn~2/3 

{*:) feV(C) 

For Xj = 0-^/2 log(n)/n, 

SU?     Ä(/„,/)<C(k£Ity/3(l + 0(l)) 
feV(C) n 



The proof is in the Appendix. 

Remark: In practice, a2, the noise level of the data, is usually unknown. 

It is natural to find an estimator ä, say, to replace the unknown a in the 

thresholds. In this paper, ä is derived from a linear estimate of / 

m-l    2J-1 

*2= £ £& (5) 
j=[m/2] k=0 

Since yj,k are independently N(ajtk, cr2/n) distributed, 

is non-central %2 distributed with the non-centrality 

naik 
m-l    2->-l „„2 

«2= £  £ 
j=[m/2] *:=0 

and for / € ^(C), from Lemma 1 and Jensen's inequality, 

« s f ( E E M)' s % t §ß? - ^S^jj 
j=[m/2] fc=0 °     J=[m/2]Z <^V^       I) 

By calculating the first and second momemts of the non-central x2 distri- 

bution, for X ~ Xn(<5), -EX = n + <52 and Var(X) = 2n + 4<52, we have 

E{c2 - a2)2 = 0{n-x) 

Finally, by using the inequality 

for all x > 0 and (fixed) y > 0, we have 

E{& - a)2 = Oin-1) 

and this leads to: 

^Theorem 2 For Xj = &y/2log(n)/n, 

sup   £(/„,/) <C'(^)2/3(1 + 0(1)) 
/€X>(C) n 

The proof is also in the Appendix. 



3    Comparisons with LS Estimator 

Least square method are commonly used in regression analysis.   The LS 

estimate for / is 
n 

f = arg    min    £(y,- - /,)2 (6) 

Note that {/;} are also the maximum likelihood estimates of {/;} when {z,} 

are iid Gaussian random variables. 
An effective algorithm, Pool-Adjacent-Violators Algorithm, has been de- 

scribed in §1.2 of Barlow et al (1972) and the resulting estimator is usually 
called the least concave majorant estimator or Grenander estimator, ref. 

Grenander (1956), Prakasa Rao (1983). Properties of Grenander estimator 

can also be found in Berge (1989) and Wang (1991). For example: 

Lemma 3 Let fg be the Grenander estimator, then 

sup   Ä(/G,/)xn-2/3 

feV(C) 

i.e. Grenander estimator achieves the optimal rate. 

We have the following comparison: 

• Wavelet estimate equipped with the optimal threshold achieves the 

optimal rate as the Grenander estimate does; while the estimator with 

the simple shrinkage rule of using Xj = ä^2log(n)/n is within a factor 

(logn)2/3 of the optimal rate. 

• Computationally, wavelet procedure is more efficient than Grenander 
procedure. In fact, the computational effort of the wavelet procedure is 

of order nlogn comparing with order n2 of the Grenander procedure. 

• Grenander estimator has boundary effects. In fact, it does not con- 

verge at discontinous points, Wang (1991). This drawback can be 

seen from our simulations, while the wavelet estimates do not have 

boundary effects. 



As a final remark, we should mention here is that wavelet procedure does 

not guarantee us a decreasing solution. From Lemma 1, non-negativity of 

the Haar coefficients is only a necessary condition for / to be decreasing. 

In the case where a decreasing solution is needed, we can still use wavelet 

procedure as the first step, since wavelet procedure is a rate-preserve trans- 

formation. We can then apply Grenander procedure to the transformed 

data. This two-step procedure requires less computational effort than ap- 

plying Grenander procedure to the original data. 

Numerical examples (Figure 1, 2, 3) show that the wavelet estimate is 
also competitive numerically with the Grenander estimate. In our simula- 
tions, we compare the L\ and Li losses of both Grenander estimator and 

our wavelet estimator: 

Äi = J2\Kti)-f(ti)\ 
»=i 

4    Appendix 

To prove our main theorem, we need to introduce some basic facts of Besov 

space theory. Let's define Besov Body in sequence space lp 

oo 2>-l 

Qs
P,q(C) = {& = (*i,*);>o, o<*<* :   £{2j*9( £ \'i*n9,p} < C] 

j=o fc=o 

for q < oo and 

©p,oo(C) = {9 = (*iA>o,o<*<2> :   sup{2^ £ 1^1"} < Cp} 
J>° fc=o 

Proof of Theorem 1:    From Lemma 1, it is obvious that 

0D(C)C0+n©i£(C/2) (7) 



where 0+ = {(0jtk): 9jJe > 0}. 

Therefore, 

sup   JE||/W-/||LO,I]    =       SUP    ^l|ö-o|l?2 
feV(C) a€0ß(C) 

< sup -E7j|a — tt||fa 

It is well known that (Donoho and Johnstone, 1992a, b) 

inf      sup       E\\ä- a\\j2 x n -2/3 

° «eej£(C7/3) 

and for the shrinkage estimates ö equipped with the optimal thresholds, we 

have the same rate 

sup       E\\ä - a\\l x n~2/3 

for the shrinkage estimate ä equipped with thresholds Xj = cry/2log(n)/n, 

sup       E\\ä-a\\i<C'(1^)^ 
a€@l%(C/2) 

I/2, Let ö+ be the projection of ä onto 0+ f)Q1'00(C/2), then we have 

sup E\\a+ - a\\l x TT
2/3 

a€@+f]e\'X{C/2) 

when the optimal thresholds are used, and 

sup E\\ä+-a\\i<C'^?l* 
«ee+n«C«y2) 

when thresholds Xj = ay/2log(n)/n are used. 

It is obvious that the coordinates in ä+ have the expressions in (2). 

Proof of Theorem 2:     The proof follows immediately from Theorem 1 
and the following Lemma. 



Lemma 4 

m-l 2>-l 

E E i^fe - ^)2 - ^fe - a^)2i = °(n_2/3) 

Proof:    From the definitions of äjtk and äj^, 

\(äj,k ~ Hk)2 ~ (öj,A - ajtk)2\ 

<    —(<T — a)  A \Zik\\<T-<x\I        ...     ^a . 

w here zjtk = \Zn(wj>k ~ aj,k)/<r- So 

|£(aj,fc - aj,i)2 - E(ajjk - ajtk)
2\ 

< ^(* _ a? + ^£{M|ä - al/^^^} 

< ^-^ + 2^(jB|2|i/y V^-^P{, > A(£A1 _ v^i)}H 

where z ~ JV(0, 1), 0 < ß < 1/2. 

For those aj^ satisfying 

y/naj,k 

aX 
< r 

where 0 < r < 1. Let Zn be a standardized non-central x£_ /^-(<5n) variate 

(i.e. £Z„ = 0 and Far(Zn) = 1) and 5 € (r, 1), 

P{2>A(f:Al_v^)} 
<7 C"A 

< P{z> A(- Al -r)} 
(7 

< P{z > A(- A 1 - r), a > sa} + P{cr < sa} 
> a 

< P{z>X{s-r)} + P{xl_^{6n)<s2n} 

<t>{X{s-r)) {1-S2)n + 61 
*       X(s-r)    +P{iZn|>     J2n + 46l   } 



Consider 

=   0(   ,      *—=) + 0(n~1) 

Nn = #{^^ > r, 0 < j < m, 0 < k < 2>'} 

where m = log2 n. Then for / £ V(C), from Lemma 1, 

V2-1     i=02^/       j=0 i=0 >rffAAAT Vn 

and so 

"•*<Ää (8) 

Therefore, by choosing r, ß small and 5 close to 1 such that 

(5-r)2(l/2-/3)>l/6 

we have 
m-l 2>-l 

i=o fc=o 

= Z*£{ofynot&£p{,>^M-£äL)}i->)} 
j=0   fc=0 

j=0   fc=0 

= 0(te) + 0(^{    £      ,.-,w^ +     ED) 

-   o(l^) + 0(^&( - +   P^)) 
~      {   n   ;+    (  n3/2  V-'-)2(1/2-/J)v'I5gn     Vlogn;j 

=    o(n"2/3) 

This completes the proof of the Lemma. 

10 
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